الأجوبة
Since 〖cos〗^4 x=(〖cos〗^2 x)^2=1/4 (1+cos2x )^2=1/4 [1+2 cos2x+〖cos〗^2 2x]
=1/4 [1+2 cos2x+1/2 (1+cos4x )]=1/8 [2+4 cos2x+1+cos4x ]
=1/8 [4 cos2x+cos4x+3]
∴∫_0^(π⁄2)〖〖cos〗^4 x〗 dx=1/8 ∫_0^(π⁄2)(3+4 cos2x+cos4x ) dx
=1/8 [3x+1/2 sin2x+1/4 sin4x ]_0^(π⁄2)=1/8 [3.π/2+1/2 sinπ+1/4 sin2π ]=3π/16
القوائم الدراسية التي ينتمي لها السؤال
معلومات ذات صلة