Write a Python program using Scikit-learn to split the iris dataset into 80% train data and 20% test data
- ذكاء صنعي
- برمجة بايثون
- 2021-09-23
- mhanasmh00489829403
الأجوبة
# Import necessary modules
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
iris = pd.read_csv("iris.csv")
#Drop id column
iris = iris.drop('Id',axis=1)
X = iris.iloc[:, :-1].values
y = iris.iloc[:, 4].values
#Split arrays or matrices into train and test subsets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)
knn = KNeighborsClassifier(n_neighbors=7)
knn.fit(X_train, y_train)
# Calculate the accuracy of the model
print("Accuracy of the model:")
print(knn.score(X_test, y_test))
Sample Output:
Accuracy of the model: 0.9666666666666667
أسئلة مشابهة
القوائم الدراسية التي ينتمي لها السؤال