Write a Python program using Scikit-learn to convert Species columns in a numerical column of the iris dataframe
- برمجة بايثون
- ذكاء صنعي
- 2021-09-23
- mhanasmh00489829403
الأجوبة
import pandas as pd
from sklearn.model_selection import train_test_split
iris = pd.read_csv("iris.csv")
# Import LabelEncoder
from sklearn import preprocessing
#creating labelEncoder
le = preprocessing.LabelEncoder()
# Converting string labels into numbers.
iris.Species = le.fit_transform(iris.Species)
#Drop id column
iris = iris.drop('Id',axis=1)
X = iris.iloc[:, :-1].values
y = iris.iloc[:, 4].values
#Split arrays or matrices into random train and test subsets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)
print("\n80% train data:")
print(X_train)
print(y_train)
print("\n20% test data:")
print(X_test)
print(y_test)
Sample Output:
80% train data: [[5.7 4.4 1.5 0.4] [6.7 3.3 5.7 2.5] [6.5 3.2 5.1 2. ] [6.7 3.1 4.7 1.5] [4.6 3.6 1. 0.2] [4.7 3.2 1.3 0.2] [6.3 2.3 4.4 1.3] [5.6 2.9 3.6 1.3] [5.6 2.8 4.9 2. ] [5.4 3.9 1.3 0.4] [6.9 3.2 5.7 2.3] [5. 3.5 1.3 0.3] [5.3 3.7 1.5 0.2] [6.1 2.6 5.6 1.4] [6.2 2.8 4.8 1.8] [7.7 3.8 6.7 2.2] [6.3 3.3 6. 2.5] [6.3 2.5 4.9 1.5] [4.8 3.4 1.9 0.2] [5.8 4. 1.2 0.2] [4.9 3.1 1.5 0.1] [5.8 2.7 5.1 1.9] [5.5 2.4 3.8 1.1] [6.7 3. 5.2 2.3] [6.3 3.3 4.7 1.6] [5.1 3.7 1.5 0.4] [5.1 3.8 1.9 0.4] [5.4 3.9 1.7 0.4] [6.2 2.9 4.3 1.3] [6.1 3. 4.9 1.8] [5.7 3.8 1.7 0.3] [5.6 2.7 4.2 1.3] [7.2 3.6 6.1 2.5] [5.4 3.7 1.5 0.2] [5.1 2.5 3. 1.1] [6. 3.4 4.5 1.6] [5. 3.3 1.4 0.2] [5.7 2.8 4.5 1.3] [4.3 3. 1.1 0.1] [4.8 3. 1.4 0.3] [6.6 3. 4.4 1.4] [5.6 2.5 3.9 1.1] [6.6 2.9 4.6 1.3] [6.5 3. 5.5 1.8] [6.3 3.4 5.6 2.4] [6.7 3.1 5.6 2.4] [6.2 3.4 5.4 2.3] [4.9 3.1 1.5 0.1] [5.6 3. 4.1 1.3] [6.3 2.8 5.1 1.5] [5.7 2.6 3.5 1. ] [6.4 2.8 5.6 2.2] [5.9 3.2 4.8 1.8] [5.1 3.3 1.7 0.5] [6.8 3.2 5.9 2.3] [4.8 3. 1.4 0.1] [5.4 3. 4.5 1.5] [6.5 3. 5.8 2.2] [6.4 3.2 4.5 1.5] [5. 3.6 1.4 0.2] [6.9 3.1 4.9 1.5] [5.5 3.5 1.3 0.2] [5.5 4.2 1.4 0.2] [6. 2.2 5. 1.5] [6.7 3. 5. 1.7] [5.4 3.4 1.5 0.4] [6.4 2.8 5.6 2.1] [5.7 3. 4.2 1.2] [5.1 3.5 1.4 0.2] [4.9 3.1 1.5 0.1] [4.7 3.2 1.6 0.2] [5.4 3.4 1.7 0.2] [5.9 3. 5.1 1.8] [4.4 3. 1.3 0.2] [5.5 2.4 3.7 1. ] [4.4 3.2 1.3 0.2] [5. 3.4 1.6 0.4] [7.7 2.6 6.9 2.3] [4.6 3.2 1.4 0.2] [5.7 2.5 5. 2. ] [4.8 3.1 1.6 0.2] [6.3 2.7 4.9 1.8] [5.2 4.1 1.5 0.1] [5.8 2.6 4. 1.2] [6.3 2.9 5.6 1.8] [6. 3. 4.8 1.8] [5.8 2.7 5.1 1.9] [4.9 3. 1.4 0.2] [5. 3. 1.6 0.2] [7. 3.2 4.7 1.4] [5.2 3.5 1.5 0.2] [6.4 3.1 5.5 1.8] [7.7 2.8 6.7 2. ] [5.8 2.8 5.1 2.4] [6.1 2.9 4.7 1.4] [6.9 3.1 5.4 2.1] [5.6 3. 4.5 1.5] [5.2 3.4 1.4 0.2] [6. 2.9 4.5 1.5] [4.6 3.4 1.4 0.3] [4.9 2.5 4.5 1.7] [5. 3.4 1.5 0.2] [5.5 2.5 4. 1.3] [4.8 3.4 1.6 0.2] [7.3 2.9 6.3 1.8] [7.9 3.8 6.4 2. ] [6.7 3.3 5.7 2.1] [6.1 2.8 4. 1.3] [6.7 3.1 4.4 1.4] [6.9 3.1 5.1 2.3] [5.7 2.9 4.2 1.3] [6.3 2.5 5. 1.9] [6.4 3.2 5.3 2.3] [4.9 2.4 3.3 1. ] [5.1 3.8 1.5 0.3] [6.1 3. 4.6 1.4] [7.1 3. 5.9 2.1] [5. 2.3 3.3 1. ] [6.2 2.2 4.5 1.5] [5. 3.2 1.2 0.2]] [0 2 2 1 0 0 1 1 2 0 2 0 0 2 2 2 2 1 0 0 0 2 1 2 1 0 0 0 1 2 0 1 2 0 1 1 0 1 0 0 1 1 1 2 2 2 2 0 1 2 1 2 1 0 2 0 1 2 1 0 1 0 0 2 1 0 2 1 0 0 0 0 2 0 1 0 0 2 0 2 0 2 0 1 2 2 2 0 0 1 0 2 2 2 1 2 1 0 1 0 2 0 1 0 2 2 2 1 1 2 1 2 2 1 0 1 2 1 1 0] 20% test data: [[5.5 2.6 4.4 1.2] [5.9 3. 4.2 1.5] [6.1 2.8 4.7 1.2] [5.8 2.7 3.9 1.2] [6.8 2.8 4.8 1.4] [5. 2. 3.5 1. ] [6. 2.7 5.1 1.6] [7.2 3. 5.8 1.6] [6.4 2.9 4.3 1.3] [6.7 2.5 5.8 1.8] [7.7 3. 6.1 2.3] [5.2 2.7 3.9 1.4] [5.1 3.8 1.6 0.2] [5. 3.5 1.6 0.6] [7.2 3.2 6. 1.8] [4.5 2.3 1.3 0.3] [5.1 3.5 1.4 0.3] [6.4 2.7 5.3 1.9] [5.5 2.3 4. 1.3] [5.8 2.7 4.1 1. ] [7.6 3. 6.6 2.1] [7.4 2.8 6.1 1.9] [6.5 3. 5.2 2. ] [5.1 3.4 1.5 0.2] [6.8 3. 5.5 2.1] [4.4 2.9 1.4 0.2] [4.6 3.1 1.5 0.2] [6.5 2.8 4.6 1.5] [5.7 2.8 4.1 1.3] [6. 2.2 4. 1. ]] [1 1 1 1 1 1 1 2 1 2 2 1 0 0 2 0 0 2 1 1 2 2 2 0 2 0 0 1 1 1]
أسئلة مشابهة
القوائم الدراسية التي ينتمي لها السؤال