الأجوبة
Rewriting the given equation in the symbolic form, we have:
(D^4+r^4 )y=0
So A.E. is m^4+r=0
Or (m^2+r^2+√2 mr)(m^2+r^2-√2 mr)=0
(m^2+r^2+√2 mr)=0 and (m^2+r^2-√2 mr)=0
Now m^2+√2 mr+r^2=0 gives m=-r/√2±r/√2 i
and m^2-√2 mr+r^2=0 gives m=r/√2±r/√2 i
Therefore,
〖Y_(G.S.)=Y〗_(C.F.)=
e^(-rx/√2) {c_1 cos (rx/√2)+c_2 sin (rx/√2) }
+e^(rx/√2) {c_3 cos (rx/√2)+c_4 sin (rx/√2) }
Where c_1, c_2, c_3, c_4 are arbitrary constants.
معلومات ذات صلة