الأجوبة
الحل:
يمكن حل هذا السؤال عن طريق كتابة جدول يوضّح العلاقة بين قيم س، وص ثم إيجاد قيم ص عندما تقترب س من الصفر؛ أي تعويض قيم مختلفة لـ س، مثل: -0.1، -0.01، -0.001، وحساب قيم ص لكل منها، وملاحظة القيمة التي تقترب منها ص كلما اقتربت قيمة س من الصفر، ولكن هذه الطريقة طويلة، وتحتاج إلى وقت. وبالتالي فإنه يمكن حل هذا السؤال بخطوة واحدة باستخدام قاعدة لوبيتال، والتي يتم من خلالها إيجاد مشتقة البسط/مشتقة المقام، ثم تعويض قيمة س كما يلي: نهاس←0+جاس/1. بتعويض قيمة س=0 في: نهاس←0+جاس/1، فإننا نحصل على الإجابة صفر؛ أي أن: نهاس←0 1 -جتاس/س =0.
القوائم الدراسية التي ينتمي لها السؤال